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ABSTRACT 

Due to the demand for bugs fixing and feature enhancements, 

developers inevitably need to update in-use software systems. 

Instead of shutting down a running system before updating, it is 

often desirable and sometimes mandatory to patch the running 

software system on the fly, with a mechanism generally referred as 

dynamic software updating (DSU). Practical DSU strategies often 

require manual specification of update points in the program for 

performing dynamic updates. At these points DSU systems will 

update the program code, and also migrate the program state to 

the new version program (using transformation functions). 

However, finding appropriate update points is non-trivial because 

the choice of update points has great influence on two competing 

factors: the timeliness of DSU and the complexity of 

transformation functions; and to strike a good balance between 

them requires a deep understanding of both versions of the 

program. In this exploratory paper, we conceive an automated 

approach to the recommendation of update points for developers. 

We conduct a set of preliminary experiments with a real world 

software update case to examine the feasibility of the approach.  

Categories and Subject Descriptors 

B.5.2 [Design Aids]: Automatic synthesis; D.2.7 [Distribution, 

Maintenance, and Enhancement]: Maintenance;  

General Terms 

Design, Languages, Experimentation. 

Keywords 

Dynamic software updating (DSU); update points; automated 

recommendation 

1. INTRODUCTION 
In use software systems often need to be updated to correct faults, 

improve performance and add functionalities. General software 

update schemas require that the to-be-updated system is static. If 

the system is running, one needs to terminate it first, update it and 

then restart it. However, in some situations, the stop-and-restart 

update schema is undesirable and even unacceptable. For example, 

stopping an air traffic controlling system or a life supporting 

system can cause life loses, offlining a financial transaction 

processing system can bring money loses. Even for daily used 

software systems, frequent restarts for applying patches can be 

disruptive and annoying. 

Dynamic software updating (DSU) is a generic technique that can 

alleviate these problems by updating software systems at run-time. 

DSU systems apply dynamic patches [1,8,9,14] on running 

programs. In addition to the code changes to the program, a 

dynamic patch also specifies a set of update points and 

corresponding transformation functions. Update points are 

positions in the original program where the program states are 

"steady" and can be reasonably mapped onto appropriate states of 

the new program, from which the program can continue in the 

new version. Transformation functions define how to do the 

mapping.  

A well prepared dynamic patch should make the DSU process 

timely and safe, i.e., the update can be applied as soon as possible 

and the new version can execute as expected after the update. The 

selection of dynamic update points has great influence on the 

timeliness of DSU and the complexity of transformation functions. 

On one hand, since one cannot predict when the dynamic updated 

request is raised at run-time, the more update points are allowed, 

the timelier the DSU can be. On the other hand, it can be more 

difficult to develop correct transformation functions for all these 

update points.   

Some existing DSU approaches such as Jvolve [1] and Javelus [14] 

implicitly specify update points by excluding infeasible points. 

These approaches apply dynamic updates once the program is at 

DSU safe points [1]. DSU safe points are special VM safe points 

where no modified methods are currently active. By allowing all 

DSU safe points as update points, the timeliness of DSU can be 

very good in most cases. However, developers need to prepare an 

universal transformation function that can map any possible state 

at these safe points. This task, if possible, can be very difficult 

except for those trivial updates.  

Hayden et al. suggest that selecting update points manually is the 

more effective way [2]. However, one have to thoroughly 

understand the logic and runtime state evolution of both version, 

and then select several update points from a huge amount of 

program points, which is time-consuming and labor-intensive. 

We propose to alleviate this program by automatically recommend 

a small set of candidate points for developers. The idea is based 

on following observations. First, dynamic software updates are 
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often evolutionary rather than revolutionary, otherwise it would 

be meaningless to apply it dynamically. In addition, for 

evolutionary changes the most of test cases provided along with 

the software are same for both versions. Second, there is a strong 

correspondence between the runtime states at corresponding 

positions in the two versions, and this correspondence can be 

observed by monitoring the executions of both version under 

same test inputs. TOS [4] exploited this correspondence to 

synthesis transformation functions for given update points, but we 

plan to further leverage it to recommend those program points that 

demonstrates clear state correspondence and are frequently passed 

through.   

The rest of this paper is organized as follows. Section 2 introduces 

the background and our problem setting. Section 3 defines some 

properties of update points and describe our conceived approach 

in details. Section 4 overviews an exploratory study for the 

approach, and Section 5 gives the experiment results. Before 

concluding the paper in Section 7, we discuss some weaknesses of 

the approach and the experiments in Section 6.  

2. BACKGROUND AND PROBLEM 

SETTING 
In this section we first briefly discuss how DSU works, then 

introduce the TOS tool that can automatically generate 

transformation functions, and finally explain our problem setting. 

2.1 Dynamic Software Updating 
Once a dynamic update request is received during the run-time of 

a program, the DSU system will trap the program at a dynamic 

update point, update the code and state of the program, and then 

resume the execution with the new code. Updating the code image 

of a running program is not difficult with the support of modern 

operating system and/or programing language runtime. However, 

in order to run the new version program correctly, DSU systems 

also need to migrate the state of the old version program to new 

version program and make it compatible with new version 

program. Transformation functions are called to do this work. 

Some DSU systems, like Jvolve [1] and Javelus [14] can produce 

default transformation functions automatically, by analyzing the 

bytecode of old and new programs. However, automatically 

generated transformation functions can only guarantee type safety 

but not semantic correctness of following program execution. For 

example, they simply assigning default value to new fields (e.g. 0 

for int and null for String). 

In practice, these changed fields often need specific values instead 

of default values. For example, if we change the definition of a 

field named EmailAddress, which should save the email address, 

in an email server system. The default transformation functions 

would assign null to EmailAddress. But we all know that 

EmailAddress in the new version program should save the email 

address, which we could get from the old version program. 

Consequently, while we use Jvolve or Javelus to update a program 

dynamically, we need to modify the default transformation 

functions sometimes. 

2.2 Targeted Object Synthesis 
Given human selected update points and a set of test cases 

common for both versions of the program, Targeted Object 

Synthesis (TOS) [4] can automatically produce transformation 

functions for updated fields. TOS extracts old and new objects of 

updated classes from old and new memory snapshots separately, 

then analyzes objects to produce transformation functions. The 

process is divided into two phases, MATCH and SYNTHESIS. 

TOS matches old and new objects up in MATCH phase and 

passes these pairs-of-objects to SYNTHESIS. In SYNTHESIS, 

TOS analyzes the values of each field in each pair of objects and 

synthesizes transformation functions for each field.  

Each time TOS tries to generate a transformation function for an 

updated field, there would be three kinds of results: generated 

successfully, unsuccessfully or there are no objects of the updated 
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Figure 1. Automated recommendation of update points 
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class at this program point. We consider the first result as success, 

the second as fail and the third as no-obj. 

2.3 Selecting Dynamic Update Points 
As mentioned before, allowing dynamic update happen at any 

DSU safe point could make the transformation functions very 

hard to define. Manual selection of update points works in 

practice but requires deep understanding of both versions of the 

software and can be labor-intensive. One way to simplify the task 

is to automatically recommend a small set of candidate update 

points for developers.  

More elaborately, given two versions of program, a set of 

common test cases for the two versions, we want to automatically 

find a set of candidate update points that satisfy the following 

requirements: 

(1) Timeliness. Once a dynamic update requests is raised, an 

update point should be reached in a short time. This implies 

that the execution of program pass through these update 

points frequently. 

(2) Correctness. The program should behave correctly after the 

update. Since complete formal specifications are seldom 

available in practice, we just require for all the provided test 

cases the program behave as expected, despite of the 

dynamic updates.  

The selected candidates of update points, together with the 

transformation functions generated by existing tools such as TOS, 

are recommended to developers for final consideration.  

3. AUTOMATED RECOMMENDATION OF 

UPDATE POINTS 

3.1 Observable Properties of Update Points 
Before presenting our conceived approach, we define three 

observable properties of update point. In our approach, we 

evaluate and recommend update points based on these properties. 

Definition 1. Timeliness means the frequency of passing through 

a candidate point during the execution of the program. 

The higher this frequency is, the more opportunities that dynamic 

update can be updated at run-time.  

Definition 2. Success-rate means the proportion of successful 

generation of transformation functions in all tries for updated 

fields at a candidate point. 

When we apply the update, we need to transform old objects to 

new ones compatible with new version program. Assume there are 

c updated classes and they have f updated fields. The c updated 

classes all have their own objects at an update point. If we apply 

update at this update point, we need f transformation functions to 

migrate each field in each updated object. In our approach, we 

need an automated tool (e.g. TOS [4]) to generate transformation 

functions for updated fields. So the success-rate indicates the level 

of difficulty of producing transformation functions. 

Definition 3. Operability means the proportion of updated class 

which have no objects at a candidate point. 

If the number of updated classes with live objects is little at a 

candidate point, we just need to generate transformation functions 

for few updated fields at this candidate point. In extreme cases, 

none of the updated classes have live objects at this point 

(operability is 1), which means that no objects need to be 

transformed during the progress of updating, and we do not need 

to generate transformation functions.  

3.2 A Conceived Approach 
As we mentioned before, default transformation functions are not 

satisfied with the practical needs and we should generate 

transformation functions according the program state at update 

points. That means the selection of update points has a great 

influence on the difficulty of generating transformation functions. 

More important, update points directly affect whether to apply the 

update successfully. Therefore, we must determine update points 

cautiously. 

Selecting update points manually is a very effective way. 

Unfortunately, the cases with manual intervention are time-

consuming and usually challenging to be right.  

We conceive an automated recommendation of update points, 

shown in Figure 1, to help programmers select update points. 

Given source code of the old and new versions and some test 

cases, our approach can evaluate candidate points and recommend 

some update points for programmers. Our approach is suitable for 

the situation which meet the following conditions: 1) The test 

cases is sufficiently representative and 2) the specification of the 

program is not changed or 3) the specification is changed a little 

but the changed part hasn’t been reached yet. For now, we 

implemented our approach for Java program. 

Figure 1 shows the steps of our approach. First, we need to 

prepare an old version source code old-code and a new version 

source code new-code. Also, we need to get n test cases, which 

can execute on old-code and new-code. By analyzing the source 

code, we can obtain information about classes, fields and methods 

(including constructors). Then we compare the source code 

information of both versions to get the update information, which 

contains updated classes, fields and methods. We also record the 

information of unchanged methods. Update points should be 

located in unchanged methods, so we set m candidate points in 

unchanged methods by inserting a little piece of Java code in 

almost each line of effective code. Afterwards, we get old-code’ 

and new-code’, and run the same n test cases on the old-code’ and 

new-code’ respectively. Running one test case on old-code’ or 

new-code’ will pass by some candidate points one or more times. 

We capture a snapshot at each time reaching a candidate point. 

The memory snapshot contains all live objects which are created 

during the execution of Java programs.  

We write a Java program named Catch.java which has a method 

named snapshot. The parameter of snapshot is int PointNo, which 

indicate the identifier of candidate points. In snapshot, we call 

java.lang.Runtime to execute Jps [16] and Jmap [16] to dump 

snapshots. If we want to set a candidate point in one line of code, 

we just need to insert Catch.snapshot(PointNo) behind this line. 

Because the effective code of unchanged methods in old-code and 

new-code are exactly same, we should get exactly the same results 

after we set candidate points in unchanged methods. In Table 1, 

there is an unchanged method f() in old-code and new-code before 

setting candidate points and they are exactly the same. The results 

of setting candidate points (assuming the PointNo are 10 and 11) 

in f() are shown in Table 2 and they are exactly the same too.  
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While executing TestCasei on the old-code’, the cth time of 

calling f(), Catch.snapshot() will dump 2 snapshots (old-

snapshot10-c and old-snapshot11-c). The same happens while 

executing TestCasei on new-code’ (dumping snapshots new-

snapshot10-c and new-snapshot11-c). 

Afterwards, we can make old-snapshot10-c and new-snapshot10-c 

as a pair, old-snapshot11-c and new-snapshot11-c as another pair. 

Running the n test cases on each version program produces n 

collections of snapshot and each collection contains some 

snapshots. We consider the two collections, produced by running 

same test case on both versions of the program, as corresponding 

collection. We detect whether the corresponding collections 

contain the same number snapshots. If not, we will eliminate these 

redundant snapshots. In our experiment, most corresponding 

collections have the same number snapshots. We match the 

snapshots in corresponding collections one by one.  

After all test cases are performed on old-code’, we can calculate 

the timeliness of each candidate point. We count the total number 

(total-count) of snapshots in all collections of snapshot. 

Meanwhile, we count the number (candidate-count) of snapshots 

belong to each candidate point. The timeliness of candidate point 

is the ratio of candidate-count and total-count. 

timeliness = candidate-count / total-count 

After collecting all the snapshots of both old-code’ and new-code’ 

and pairing them up, we will invoke TOS [4]. TOS automatically 

produce transformation functions by analyzing a pair of old and 

new snapshots. To explain it, we take the first collection of 

snapshots as an example and we assume there are t snapshots in it. 

Because we’ve matched the snapshots up, the snapshot i in old 

version and snapshot i in new version are pairs-of-snapshots. We 

use TOS to analyze each pair-of-snapshots, trying to produce 

transformation functions for f updated-fields. We treat producing 

transformation functions successfully as success, unsuccessfully 

as fail. Moreover, there may be no object of the updated class in 

one pair-of-snapshots, and we consider this result as no-obj. After 

we finish generating transformation functions for updated fields, 

we count the number of each result, success-count for success, 

fail-count for fail and no-count for no-object. The sum of success-

count, fail-count and no-count should equal to f. The success-rate 

of one pair-of-snapshots is the ratio of success-count and the sum 

of success-count and fail-count. The operability is the ratio of no-

count and f.  

success-rate = success-count / (success-count + fail-count) 

operability = no-count / f 

After we get the success-rate and operability of each pair-of-

snapshots, we calculate the success-rate and operability of each 

candidate point. We first classify old snapshots by the candidate 

points they belong to. Then we sum success-rate or operability up. 

We treat the average of success-rate or operability as the success-

rate or operability of the candidate point. 

We don’t need to calculate the timeliness, success-rate and 

operability of each candidate point in new-code’, because we only 

need to recommend the update point in the old version program. 

When we get all these data, we weigh them when ranking 

candidate points and recommending update points. 

4. AN EXPLORATORY STUDY 
This section introduces the design of our exploratory study. The 

purpose of our study is to examine whether the above approach is 

feasible and effective in practice. We want to find out: 

(1) Can we evaluate and recommend update points according to 

the properties that we defined? 

(2) Whether there are correlations between the three properties? 

(3) Whether the properties of the candidate points in some 

program structures are better than other candidate points? 

4.1 Selection of Subjects 
For the client-side software systems, the loss of time and data 

caused by terminating and updating are usually not serious. On 

the contrary, shutting down a server software system, such as an 

email server, may not only bring inconvenience to lots of 

customers and degrade user experience, but also lose a large 

amount of user data. So we choose to carry out our study on a 

server software system, Siena. 

Siena (Scalable Internet Event Notification Architecture) [17] is 

an Internet-scale event notification middleware for distributed 

event-based applications deployed over wide-area networks. It is 

responsible for selecting notifications that are of interest to clients 

(as expressed in client subscriptions) and then delivering those 

notifications to the clients via access points. Siena is a popular 

open source Java software product, and one can get Siena and its 

test cases from SIR (Software-artifact Infrastructure Repository, 

http://sir.unl.edu/portal/index.php). 

There are 26 classes and 138 fields in the 6 versions of program, 

194 methods in Siena1.8, 185 methods in Siena1.9 and Siena1.10, 

195 methods in Siena1.11, 196 methods in Siena1.14 and 192 

methods in Siena1.15. 

We obtained 8 versions of Siena (1.8, 1.9, 1.10, 1.11, 1.12, 1.13, 

1.14 and 1.15) from SIR. We collected update information 

between the adjacent versions. There are five changed classes 

between 1.10 and 1.11, four changed classes between 1.8 and 1.9 

also between 1.14 and 1.15, three changed classes between 1.13 

and 1.14, two changed classes between 1.11 and 1.12, one 

changed class in 1.9 and 1.0 also between 1.12 and 1.13. We 

Table 1. Unchanged methods without candidate points 

old-code new-code 
void f() { 
  int num = 1; 
  String str = null; 
} 

void f() { 
  int num = 1; 
  String str = null; 
} 

 

Table 2. Unchanged methods with candidate points 

old-code’ 
void f() { 
  int num = 1; Catch.snapshot(10); 
  String str = null; Catch.snapshot(11); 
} 

new-code’ 
void f() { 
  int num = 1; Catch.snapshot(10); 
  String str = null; Catch.snapshot(11); 
} 
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conducted experiments with the three version update, which are 

1.8 and 1.9, 1.10 and 1.11, 1.14 and 1.15, because the three 

version updates have the maximum three updated content.  

Table 3 shows source code information and update information 

about the three version updates. The first row of Table 3 shows 

the old and new programs. The second row shows the number of 

updated classes and total number of classes in each version. The 

third row shows the number of updated fields and total number of 

fields in each version. We consider all the fields in an updated 

class as updated fields. The fourth row shows the number of 

updated methods (include constructors) and total number of 

methods in each version. The fifth row shows the updated lines of 

effective code and total lines of effective code in each version. 

When we count the lines of effective code, we only take the code 

in methods and constructors into consideration. So, the updated 

effective code is effective code in updated methods and 

constructors, the total lines of effective code are the total lines of 

effective code of all methods and constructors. The sixth row 

shows the number of unchanged methods (include constructors) 

with some candidate points and the total number of unchanged 

methods. The last row shows the number of candidate points and 

total lines of unchanged code (the effective cod in unchanged 

methods and constructors).  

4.2 Setting Candidate Points  
In addition to collecting snapshots, we also need basic 

information about these snapshots. The attributes we recorded for 

each snapshot are shown in Table 4. 

We matched old and new snapshots precisely by comparing these 

attributes. While Catch.snapshot() dumping snapshots, these 

attributes are recorded at the same time. 

In our implementation, we tried to set candidate point behind 

every line ended with “;” and ignore some special lines. For 

example, in Table 2, we ignored the first line “void f() {” and the 

last line “}”, which were also counted as effective code. Also, we 

didn’t set candidate point behind “return;”, “break;”, “continue;” 

the conditions of branch statements (“if” or “switch”), or the 

conditions of loop statements (“for” or “while”). 

Table 3 demonstrates that, we selected 74.6% on average of 

unchanged lines of code and set candidate points, covering 91.2% 

on average of unchanged methods. 

4.3 Running Test Cases 
There are 581 test cases in the Siena project that we got from SIR. 

In order to ensure the validity of our experiment, we executed all 

the test cases in our experiments.  

Our experiment configurations are as follows. The operating 

system is 64-bit Ubuntu Kylin 14.04 with 8GB RAM, Intel Core 

3.40GHz 8-core CPU. We use OpenJDK 1.7 to perform our 

experiment. 

Executing all these test cases on 6 programs, which took about 

one week, dumps a huge amount of snapshots showing in Table 5. 

TOS may fail a few times while analyzing pairs of snapshots due 

to bugs. Therefore, the count of snapshots that TOS analyzed is 

less than all of the snapshots. 

TOS only can produce transformation functions for an updated 

field each time. We improve TOS to generate transformation 

functions for all fields each time, but the basic functionality has 

not changed. 

4.4 Calculating Properties of Each Point 
In section 3.1, we introduced three properties for candidate points, 

namely timeliness, success-rate and operability. We use algorithm 

1 in Table 6 to calculate the timeliness and algorithm 2 in Table 7 

to calculate success-rate and operability. To be sure, if there are 

no objects of any updated class in the snapshot, the operability of 

this snapshot is 1. If the operability is 1, we do not need to 

Table 4. Attributes of a snapshot 

Property Explanation 

FileName The name of Java file. 

LineNo The No. of this line of code. 

MethodName The name of method. 

PointNo The identifier of candidate point. 

PointTimes The times of passing this candidate point. 

SnapshotCount The count of snapshots captured for now. 

 

Table 3. Source code and update information 

Old-version/new-version 1.8/1.9 1.10/1.11 1.14/1.15 

Class-number: updated/old/new 4/26/26 5/26/26 4/26/26 

Field-number: updated/old/new 32/138/138 70/138/138 52/138/138 

Method-number: updated/old/new 11/194/185 13/185/195 14/196/192 

Code-lines: updated/old/new 612/1777/1756 646/1758/1794 752/1798/1784 

Methods-with-point/unchanged-methods 167/183 166/182 166/182 

Candidate-points/unchanged-codes 855/1165 820/1112 803/1046 

 

Table 5. The number of snapshots 

Update 1.8 to 1.9 1.10 to 1.11 1.14 to 1.15 

Version 1.8 1.9 1.10 1.11 1.14 1.15 

Count of snapshots 572690 572831 653849 653802 663370 662047 

Count of snapshots TOS analyzed 572566 653755 661961 
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generate transformation functions, and we consider the success-

rate as 1. 

Because of the huge amount of data, the whole progress of 

computing timeliness, success-rate and operability takes about 7 

hours. 

5. EXPERIMENT RESULTS 

5.1 Feasibility of the Technique 
We performed experiments on three real version updates of Siena. 

Before this section, we have introduced our experiment 

configurations. In this section, we will present the result of 

experiment and tries to answer question (1): 

(1) Can we evaluate and recommend update points according to 

the properties that we defined? 

When we tried to evaluate candidate points based on the result, 

we found that there existed some null points. The three properties 

(timeliness, success-rate and operability) of a null point were all 0, 

which meant this point was never reached during executing test 

cases. We filtered out these null points. Then we found another 

problem. Although the three properties of left candidate points 

were not 0, but some candidate points, called bad points, had 

extreme properties. For example, the timeliness of a bad point 

may be 0.99 (close to 1), but the success-rate of the bad point is 

very small (close to 0). 

As we all know, there are few objects when a program starts. 

Therefore the operability and success-rate of candidate points in 

starting period is usually higher or even 1. However, the program 

only starts once. So the timeliness of candidate points in starting 

period are usually small or even near-zero. If we rank candidate 

points by giving the highest priority to operability, some of the 

top-ranking points are actually bad choices. 

Bad and null points would affect our results to a certain extent. 

Thus, we filtered out bad points too in the following steps. 

After excluding null points, we counted the number of left points, 

calculated the sum of each property and computed the average of 

each property. We took the average as threshold and exclude 

points if one or more properties were smaller than the threshold. 

But this threshold would have filtered out most or ever all 

candidate points. So we took the half of average as the threshold. 

The threshold could be more accurate, and we will make further 

attempts in our future work. 

Table 8 shows the number of null points and bad points in each 

update. After filtering out null and bad points, there are 91 

candidate points left in update from 1.8 to 1.9, 94 candidate 

points left in update from 1.10 to 1.11 and 49 candidate points left 

in update from 1.14 to 1.15. We will recommend update points for 

each update. 

Each snapshot has three properties. Each property can suit 

different needs. If we want to finish updating timelier, we can give 

more weight to timeliness. Similarly, by weighting success-rate 

more we can make the transformation function easier to develop, 

and thus be more confident about the correctness of dynamic 

update. 

Table 9 shows the update points recommended by our approach. 

We take Siena1.8-1.9 as an example and consider timeliness first 

and success-rate second. From the result, the three properties can 

distinguish each update points. We can use the three properties to 

evaluate and recommend update points for programmers. After 

programmers getting our suggestions, they can determine the 

update points according to their judgments. 

We check these points in each update according to our 

understandings of the logic and runtime state of each version and 

find out that dynamic updates can be applied at these update 

points and the executions after updating are as our expected. 

5.2 Correlations between Properties 

In this section, we tries to answer question (2): 

(2) Whether there are correlations between the three properties? 

As a matter of experience, the higher of operability, the less 

operations are needed to generate transformation functions. 

Therefore, we propose a hypothesis: 

Table 6. Computing timeliness 

Algorithm 1: compute timeliness 

Input: collections-of-snapshots of old program 

Output: the timeliness of each candidate points 

1. Start; 

2. Iterate through each collections-of-snapshots 

3.   Iterate through each snapshot; 

4.     Add 1 to the point which the snapshot belongs to; 

5. Iterate through each candidate points; 

6.   Compute the ratio of snapshots number and total 

number; 

7. End; 

 

Table 8. Excluding candidate points 

Update 1.8 to 1.9 1.10 to 1.11 1.14 to 1.15 

Candidate points 855 820 803 

Null points 589 550 578 

Bad points 175 176 176 

Remaining points 91 94 49 

 

Table 7. Computing success-rate and operability 

Algorithm 2: compute success-rate and operability 

Input: candidate points, collections-of-snapshots 

Output: success-rate and operability of each candidate 

points 

1. Start; 

2. Iterate through each collection-of-snapshots 

3.   Iterate through each pair-of-snapshots; 

4.     TOS generating transformer function for each 

updated fields; 

5.    Compute success-rate and operability of this 

snapshot; 

6.    Add 1 to the point which the snapshot belongs to; 

7.    Add the success-rate of this snapshot to the point; 

8.    Add the operability of this snapshot to the point; 

9. Iterate through each candidate points; 

10.   Compute the average of success-rate of this point; 

11.   Compute the average of operability of this point; 

12. End; 
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H1: There is a positive correlation between operability and 

success-rate. 

We calculate the correlation between each two properties. 

Because null points have great effect on correlation, we exclude 

null points before calculating correlations. 

Table 10 shows the correlations we get. It indicates that generally 

there is neither correlation between timeliness and success-rate, 

nor correlation between timeliness and operability. As to the 

correlation between success-rate and operability, the result is 

significantly positive for updates from 1.8 to 1.9 and 1.10 to 1.11, 

and weakly positive (although very close to significant level) for 

the update from 1.10 to 1.11. 

In summary, hypothesis H1 is confirmed by the result.  

The positive correlation between success-rate and operability 

suggests that it may be unnecessary to measure both of them in 

recommending update points. The independence between 

timeliness and success-rate/operability suggests that it is possible 

to select update points that can make the dynamic update both 

timely and the transformation functions easy to write. 

5.3 Correlation between Properties and 

Program Structure 

In this section, we tries to answer question (3): 

(3) Whether the properties of the candidate points in some 

program structures are better than other candidate points? 

In the following part, “special statements” means branch 

statements (“if” and “switch”) or loop statements (“for” and 

“while”), “common statements” means the others.  

After we get the properties of every candidate points, we iterate 

through every unchanged method and find out whether there are 

special statements in the unchanged method. If there are special 

statements, we first calculate the average of every property of all 

candidate points in special statements, then calculate the average 

of every property of all candidate points in common statements. 

Afterwards, we compare the relationship between common 

statements and special statements, in the same methods. 

Intuitively, timeliness of update points in loop statements may be 

higher than those in common statements; and those in branch 

statements may be lower than in common statements. Therefore, 

we propose two hypotheses: 

H2: In same methods, the timeliness of candidate points in loop 

statements is higher than those in common statements. 

H3: In same methods, the timeliness of candidate points in branch 

statements is lower than those in common statements.  

In the update from 1.8 to 1.9, we find 18 unchanged methods have 

both common and special statements, in update from 1.10 to 1.11, 

we find 18 and in update from 1.14 to 1.15, we find 17. Totally, 

there are 43 unchanged methods have both common and special 

statements in our experiment. 

Table 11 presents the comparisons of properties between common 

and special statements.  

In the second row, we use abbreviations. “C” stands for “common 

statements” and “S” stands for “special statements”. “C=S” in 

“Timeliness” column means that, timeliness of candidate points in 

common statements is equal to those in special statements. And 

“C>S” or “C<S” means the properties of candidate points in 

common statements are greater or smaller than those in special 

statements. 

From Table 11, we can observe that, 37 unchanged methods have 

loop statements and 32 unchanged methods have branch 

statements. Because there can exist both loop and branch 

statements in a method, the sum of 32 and 37 is greater than 43 

unchanged methods. 

In “Branch statements” row, “Timeliness” column, there are 32 

of “C>S”, which means the timeliness of branch statements is 

smaller than common statements in all 32 unchanged methods 

Table 10. Correlations between properties 

Update 1.8 to 1.9 1.10 to 1.11 1.14 to 1.15 

Timeliness vs 

Success-rate 
-0.0386 -0.0770 -0.0185 

Timeliness vs 

Operability 
-0.1442 -0.1531 -0.1492 

Success-rate vs 

Operability 
0.5916 0.6711 0.4951 

 

Table 11. Comparing special and common statements 

Properties Timeliness Success-rate Operability 

Comparisons C=S C>S C<S C=S C >S C<S C=S C >S C<S 

Loop statements 0 15 22 3 26 8 5 28 4 

Branch statements 0 32 0 0 29 3 0 27 5 

 

Table 9. Recommending 5 update points 

PointNo FileName Class MethodName Timeliness  Success-rate Operability 

391 SENP.java ByteBuf bytes 0.1212 0.5947 0.678 

385 SENP.java ByteBuf append 0.066 0.6457 0.6989 

387 SENP.java ByteBuf append 0.0526 0.5394 0.648 

398 SENP.java Tokenizer currByte 0.0472 0.6698 0.7152 

399 SENP.java Tokenizer currByte 0.0472 0.6698 0.7152 

 

142



with branch statements. In 100% of unchanged method with 

branch statements, the timeliness in branch statements is smaller 

than those in common statements. Therefore, we accept 

hypothesis H3. 

However, when we try to verify H2, we cannot give a definitive 

conclusion from Table 11. In “Loop statements” row, 

“Timeliness” column, we can see that 22 “C<S” are satisfy H2, 

but 15 “C>S” are not. We check these 15 methods and find that, 

the 15 unchanged methods have both loop statements and branch 

statements. And some of loop statements are in branch statements 

and the other loop statements have branch statements in them, that 

is the why timeliness in common statements are greater than loop 

statements. Therefore, we cannot accept H2, but we get another 

conclusion: In the same methods, the timeliness of candidate 

points in loop statements, which have no branch statements or are 

not in branch statements, is higher than those in common 

statements. 

For success-rate and operability, we can conclude that, common 

statements have much higher values than special statements. This 

conforms to the intuition that states at theses points are transient 

and unstable, and thus the transform functions for them are 

difficult to develop. 

This study clearly indicates that the program structures have some 

effect on properties of candidate points. In our future work, we 

plan to improve our approach by taking program structures into 

account. 

6. DISCUSSION 

6.1 Efficiency 

In order to recommend update points with better update timeliness 

and less state transformation complexity, we considered as much 

candidate points as we could. In our experiment, we set candidate 

points in about 74% unchanged lines of valid code, which covered 

91.2% of unchanged methods. In the following steps of the 

experiment, executing test cases, collecting snapshot at these 

candidate points and analyzing the properties of each candidate 

point were all time-consuming. It took about 8 days to get the 

results.  

We spent little effort to optimize the execution performance of the 

experiment in this preliminary study, but we believe there is a 

large room for improvement.  

For example, we can borrow the idea of “equivalent update 

points” used in Hayden et al. [18]. In that work they proposed an 

efficient, systematic testing methodology for dynamically 

updateable software. To avoid duplicated testing they group 

semantically equivalent update points together and just test one of 

them. In our approach, we also just need to evaluate one update 

point in an equivalent group. For instance, in Table 12, we 

assume that f(), g() and h() do not call any other functions. And 

point_1, point_2, point_3 and point_4 are update points. In an 

update, f() and g() remain the same, h() is changed. Whether we 

apply the update at point_1, point_2 or point_3, the behavior of 

this program is the same. The main() calls f() and g(). And these 

calls will point to the old version. On the other hand, the calls to 

h() will point to the new version. So point_1, point_2 and point_3 

are equivalent points. 

Initial estimation with our subject shows that the method can 

reduce equivalent update tests and equivalent update points for 

about 90%. We plan to adopt this optimization in our future work. 

6.2 Test Case And Real-World Execution 

Our approach and experiment executing test cases to collect 

snapshots and then analyze properties of candidate points. The 

most practical way is getting a large amount of different user’s 

operation trace and then collecting snapshots from these trace. 

However, it is extremely difficult to obtain these data. After the 

comprehensive balance, we decide to use a set of test cases, which 

can execute on both old and new programs. This will lead to little 

deviation from real-world execution. But we think it is acceptable. 

If one wants to use our approach to get more precise results, the 

real-world execution can be taken into consideration.  

7. CONCLUSION AND FUTURE WORK 
In this paper, we conceived an approach to automatic 

recommendation of update points for dynamic software updating. 

Some preliminary experiments were carried out to examine the 

feasibility and effectiveness of our approach and explore some 

relevant issues.  

We are working on further improvements to this approach such as 

a better strategy to select candidate update points, performance 

optimizations and more experiments with real world subjects to 

evaluate the correctness and effectiveness of our approach.  
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