
Automated Recommendation of Dynamic Software Update

Points: An Exploratory Study
Zelin Zhao, Xiaoxing Ma, Chang Xu, Wenhua Yang

State Key Laboratory for Novel Software Technology at Nanjing University

Institute of Computer Software, Nanjing University

{zelinzhao1105, ihope1024}@gmail.com, {xxm, changxu}@nju.edu.cn

ABSTRACT

Due to the demand for bugs fixing and feature enhancements,

developers inevitably need to update in-use software systems.

Instead of shutting down a running system before updating, it is

often desirable and sometimes mandatory to patch the running

software system on the fly, with a mechanism generally referred as

dynamic software updating (DSU). Practical DSU strategies often

require manual specification of update points in the program for

performing dynamic updates. At these points DSU systems will

update the program code, and also migrate the program state to

the new version program (using transformation functions).

However, finding appropriate update points is non-trivial because

the choice of update points has great influence on two competing

factors: the timeliness of DSU and the complexity of

transformation functions; and to strike a good balance between

them requires a deep understanding of both versions of the

program. In this exploratory paper, we conceive an automated

approach to the recommendation of update points for developers.

We conduct a set of preliminary experiments with a real world

software update case to examine the feasibility of the approach.

Categories and Subject Descriptors

B.5.2 [Design Aids]: Automatic synthesis; D.2.7 [Distribution,

Maintenance, and Enhancement]: Maintenance;

General Terms

Design, Languages, Experimentation.

Keywords

Dynamic software updating (DSU); update points; automated

recommendation

1. INTRODUCTION
In use software systems often need to be updated to correct faults,

improve performance and add functionalities. General software

update schemas require that the to-be-updated system is static. If

the system is running, one needs to terminate it first, update it and

then restart it. However, in some situations, the stop-and-restart

update schema is undesirable and even unacceptable. For example,

stopping an air traffic controlling system or a life supporting

system can cause life loses, offlining a financial transaction

processing system can bring money loses. Even for daily used

software systems, frequent restarts for applying patches can be

disruptive and annoying.

Dynamic software updating (DSU) is a generic technique that can

alleviate these problems by updating software systems at run-time.

DSU systems apply dynamic patches [1,8,9,14] on running

programs. In addition to the code changes to the program, a

dynamic patch also specifies a set of update points and

corresponding transformation functions. Update points are

positions in the original program where the program states are

"steady" and can be reasonably mapped onto appropriate states of

the new program, from which the program can continue in the

new version. Transformation functions define how to do the

mapping.

A well prepared dynamic patch should make the DSU process

timely and safe, i.e., the update can be applied as soon as possible

and the new version can execute as expected after the update. The

selection of dynamic update points has great influence on the

timeliness of DSU and the complexity of transformation functions.

On one hand, since one cannot predict when the dynamic updated

request is raised at run-time, the more update points are allowed,

the timelier the DSU can be. On the other hand, it can be more

difficult to develop correct transformation functions for all these

update points.

Some existing DSU approaches such as Jvolve [1] and Javelus [14]

implicitly specify update points by excluding infeasible points.

These approaches apply dynamic updates once the program is at

DSU safe points [1]. DSU safe points are special VM safe points

where no modified methods are currently active. By allowing all

DSU safe points as update points, the timeliness of DSU can be

very good in most cases. However, developers need to prepare an

universal transformation function that can map any possible state

at these safe points. This task, if possible, can be very difficult

except for those trivial updates.

Hayden et al. suggest that selecting update points manually is the

more effective way [2]. However, one have to thoroughly

understand the logic and runtime state evolution of both version,

and then select several update points from a huge amount of

program points, which is time-consuming and labor-intensive.

We propose to alleviate this program by automatically recommend

a small set of candidate points for developers. The idea is based

on following observations. First, dynamic software updates are

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

INTERNETWARE'14, November 17, 2014, Hong Kong, China

Copyright 2014 ACM 978-1-4503-3303-0/14/11... $15.00.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

INTERNETWARE’14, November 17, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3303-0/14/11...$15.00
http://dx.doi.org/10.1145/2677832.2677853

136

often evolutionary rather than revolutionary, otherwise it would

be meaningless to apply it dynamically. In addition, for

evolutionary changes the most of test cases provided along with

the software are same for both versions. Second, there is a strong

correspondence between the runtime states at corresponding

positions in the two versions, and this correspondence can be

observed by monitoring the executions of both version under

same test inputs. TOS [4] exploited this correspondence to

synthesis transformation functions for given update points, but we

plan to further leverage it to recommend those program points that

demonstrates clear state correspondence and are frequently passed

through.

The rest of this paper is organized as follows. Section 2 introduces

the background and our problem setting. Section 3 defines some

properties of update points and describe our conceived approach

in details. Section 4 overviews an exploratory study for the

approach, and Section 5 gives the experiment results. Before

concluding the paper in Section 7, we discuss some weaknesses of

the approach and the experiments in Section 6.

2. BACKGROUND AND PROBLEM

SETTING
In this section we first briefly discuss how DSU works, then

introduce the TOS tool that can automatically generate

transformation functions, and finally explain our problem setting.

2.1 Dynamic Software Updating
Once a dynamic update request is received during the run-time of

a program, the DSU system will trap the program at a dynamic

update point, update the code and state of the program, and then

resume the execution with the new code. Updating the code image

of a running program is not difficult with the support of modern

operating system and/or programing language runtime. However,

in order to run the new version program correctly, DSU systems

also need to migrate the state of the old version program to new

version program and make it compatible with new version

program. Transformation functions are called to do this work.

Some DSU systems, like Jvolve [1] and Javelus [14] can produce

default transformation functions automatically, by analyzing the

bytecode of old and new programs. However, automatically

generated transformation functions can only guarantee type safety

but not semantic correctness of following program execution. For

example, they simply assigning default value to new fields (e.g. 0

for int and null for String).

In practice, these changed fields often need specific values instead

of default values. For example, if we change the definition of a

field named EmailAddress, which should save the email address,

in an email server system. The default transformation functions

would assign null to EmailAddress. But we all know that

EmailAddress in the new version program should save the email

address, which we could get from the old version program.

Consequently, while we use Jvolve or Javelus to update a program

dynamically, we need to modify the default transformation

functions sometimes.

2.2 Targeted Object Synthesis
Given human selected update points and a set of test cases

common for both versions of the program, Targeted Object

Synthesis (TOS) [4] can automatically produce transformation

functions for updated fields. TOS extracts old and new objects of

updated classes from old and new memory snapshots separately,

then analyzes objects to produce transformation functions. The

process is divided into two phases, MATCH and SYNTHESIS.

TOS matches old and new objects up in MATCH phase and

passes these pairs-of-objects to SYNTHESIS. In SYNTHESIS,

TOS analyzes the values of each field in each pair of objects and

synthesizes transformation functions for each field.

Each time TOS tries to generate a transformation function for an

updated field, there would be three kinds of results: generated

successfully, unsuccessfully or there are no objects of the updated

old-code

new-code

get update-info

set m candidate-

points

old-code’

new-code’

test-case 1…n

snapshot 1…t

snapshot 1…x

…

n snapshots sets

snapshot 1…t

snapshot 1…x

…

n snapshots sets

snapshot 1

snapshot t

…

t snapshots

snapshot 1

snapshot t
…

t snapshots

TOS

update-field

1…f

success

fail

no-obj

timeliness

success-rate

operability

exclude

null point

and

bad point

update-point 1

update-point 2

…

rank and

recommend

update-points

Figure 1. Automated recommendation of update points

137

class at this program point. We consider the first result as success,

the second as fail and the third as no-obj.

2.3 Selecting Dynamic Update Points
As mentioned before, allowing dynamic update happen at any

DSU safe point could make the transformation functions very

hard to define. Manual selection of update points works in

practice but requires deep understanding of both versions of the

software and can be labor-intensive. One way to simplify the task

is to automatically recommend a small set of candidate update

points for developers.

More elaborately, given two versions of program, a set of

common test cases for the two versions, we want to automatically

find a set of candidate update points that satisfy the following

requirements:

(1) Timeliness. Once a dynamic update requests is raised, an

update point should be reached in a short time. This implies

that the execution of program pass through these update

points frequently.

(2) Correctness. The program should behave correctly after the

update. Since complete formal specifications are seldom

available in practice, we just require for all the provided test

cases the program behave as expected, despite of the

dynamic updates.

The selected candidates of update points, together with the

transformation functions generated by existing tools such as TOS,

are recommended to developers for final consideration.

3. AUTOMATED RECOMMENDATION OF

UPDATE POINTS

3.1 Observable Properties of Update Points
Before presenting our conceived approach, we define three

observable properties of update point. In our approach, we

evaluate and recommend update points based on these properties.

Definition 1. Timeliness means the frequency of passing through

a candidate point during the execution of the program.

The higher this frequency is, the more opportunities that dynamic

update can be updated at run-time.

Definition 2. Success-rate means the proportion of successful

generation of transformation functions in all tries for updated

fields at a candidate point.

When we apply the update, we need to transform old objects to

new ones compatible with new version program. Assume there are

c updated classes and they have f updated fields. The c updated

classes all have their own objects at an update point. If we apply

update at this update point, we need f transformation functions to

migrate each field in each updated object. In our approach, we

need an automated tool (e.g. TOS [4]) to generate transformation

functions for updated fields. So the success-rate indicates the level

of difficulty of producing transformation functions.

Definition 3. Operability means the proportion of updated class

which have no objects at a candidate point.

If the number of updated classes with live objects is little at a

candidate point, we just need to generate transformation functions

for few updated fields at this candidate point. In extreme cases,

none of the updated classes have live objects at this point

(operability is 1), which means that no objects need to be

transformed during the progress of updating, and we do not need

to generate transformation functions.

3.2 A Conceived Approach
As we mentioned before, default transformation functions are not

satisfied with the practical needs and we should generate

transformation functions according the program state at update

points. That means the selection of update points has a great

influence on the difficulty of generating transformation functions.

More important, update points directly affect whether to apply the

update successfully. Therefore, we must determine update points

cautiously.

Selecting update points manually is a very effective way.

Unfortunately, the cases with manual intervention are time-

consuming and usually challenging to be right.

We conceive an automated recommendation of update points,

shown in Figure 1, to help programmers select update points.

Given source code of the old and new versions and some test

cases, our approach can evaluate candidate points and recommend

some update points for programmers. Our approach is suitable for

the situation which meet the following conditions: 1) The test

cases is sufficiently representative and 2) the specification of the

program is not changed or 3) the specification is changed a little

but the changed part hasn’t been reached yet. For now, we

implemented our approach for Java program.

Figure 1 shows the steps of our approach. First, we need to

prepare an old version source code old-code and a new version

source code new-code. Also, we need to get n test cases, which

can execute on old-code and new-code. By analyzing the source

code, we can obtain information about classes, fields and methods

(including constructors). Then we compare the source code

information of both versions to get the update information, which

contains updated classes, fields and methods. We also record the

information of unchanged methods. Update points should be

located in unchanged methods, so we set m candidate points in

unchanged methods by inserting a little piece of Java code in

almost each line of effective code. Afterwards, we get old-code’

and new-code’, and run the same n test cases on the old-code’ and

new-code’ respectively. Running one test case on old-code’ or

new-code’ will pass by some candidate points one or more times.

We capture a snapshot at each time reaching a candidate point.

The memory snapshot contains all live objects which are created

during the execution of Java programs.

We write a Java program named Catch.java which has a method

named snapshot. The parameter of snapshot is int PointNo, which

indicate the identifier of candidate points. In snapshot, we call

java.lang.Runtime to execute Jps [16] and Jmap [16] to dump

snapshots. If we want to set a candidate point in one line of code,

we just need to insert Catch.snapshot(PointNo) behind this line.

Because the effective code of unchanged methods in old-code and

new-code are exactly same, we should get exactly the same results

after we set candidate points in unchanged methods. In Table 1,

there is an unchanged method f() in old-code and new-code before

setting candidate points and they are exactly the same. The results

of setting candidate points (assuming the PointNo are 10 and 11)

in f() are shown in Table 2 and they are exactly the same too.

138

While executing TestCasei on the old-code’, the cth time of

calling f(), Catch.snapshot() will dump 2 snapshots (old-

snapshot10-c and old-snapshot11-c). The same happens while

executing TestCasei on new-code’ (dumping snapshots new-

snapshot10-c and new-snapshot11-c).

Afterwards, we can make old-snapshot10-c and new-snapshot10-c

as a pair, old-snapshot11-c and new-snapshot11-c as another pair.

Running the n test cases on each version program produces n

collections of snapshot and each collection contains some

snapshots. We consider the two collections, produced by running

same test case on both versions of the program, as corresponding

collection. We detect whether the corresponding collections

contain the same number snapshots. If not, we will eliminate these

redundant snapshots. In our experiment, most corresponding

collections have the same number snapshots. We match the

snapshots in corresponding collections one by one.

After all test cases are performed on old-code’, we can calculate

the timeliness of each candidate point. We count the total number

(total-count) of snapshots in all collections of snapshot.

Meanwhile, we count the number (candidate-count) of snapshots

belong to each candidate point. The timeliness of candidate point

is the ratio of candidate-count and total-count.

timeliness = candidate-count / total-count

After collecting all the snapshots of both old-code’ and new-code’

and pairing them up, we will invoke TOS [4]. TOS automatically

produce transformation functions by analyzing a pair of old and

new snapshots. To explain it, we take the first collection of

snapshots as an example and we assume there are t snapshots in it.

Because we’ve matched the snapshots up, the snapshot i in old

version and snapshot i in new version are pairs-of-snapshots. We

use TOS to analyze each pair-of-snapshots, trying to produce

transformation functions for f updated-fields. We treat producing

transformation functions successfully as success, unsuccessfully

as fail. Moreover, there may be no object of the updated class in

one pair-of-snapshots, and we consider this result as no-obj. After

we finish generating transformation functions for updated fields,

we count the number of each result, success-count for success,

fail-count for fail and no-count for no-object. The sum of success-

count, fail-count and no-count should equal to f. The success-rate

of one pair-of-snapshots is the ratio of success-count and the sum

of success-count and fail-count. The operability is the ratio of no-

count and f.

success-rate = success-count / (success-count + fail-count)

operability = no-count / f

After we get the success-rate and operability of each pair-of-

snapshots, we calculate the success-rate and operability of each

candidate point. We first classify old snapshots by the candidate

points they belong to. Then we sum success-rate or operability up.

We treat the average of success-rate or operability as the success-

rate or operability of the candidate point.

We don’t need to calculate the timeliness, success-rate and

operability of each candidate point in new-code’, because we only

need to recommend the update point in the old version program.

When we get all these data, we weigh them when ranking

candidate points and recommending update points.

4. AN EXPLORATORY STUDY
This section introduces the design of our exploratory study. The

purpose of our study is to examine whether the above approach is

feasible and effective in practice. We want to find out:

(1) Can we evaluate and recommend update points according to

the properties that we defined?

(2) Whether there are correlations between the three properties?

(3) Whether the properties of the candidate points in some

program structures are better than other candidate points?

4.1 Selection of Subjects
For the client-side software systems, the loss of time and data

caused by terminating and updating are usually not serious. On

the contrary, shutting down a server software system, such as an

email server, may not only bring inconvenience to lots of

customers and degrade user experience, but also lose a large

amount of user data. So we choose to carry out our study on a

server software system, Siena.

Siena (Scalable Internet Event Notification Architecture) [17] is

an Internet-scale event notification middleware for distributed

event-based applications deployed over wide-area networks. It is

responsible for selecting notifications that are of interest to clients

(as expressed in client subscriptions) and then delivering those

notifications to the clients via access points. Siena is a popular

open source Java software product, and one can get Siena and its

test cases from SIR (Software-artifact Infrastructure Repository,

http://sir.unl.edu/portal/index.php).

There are 26 classes and 138 fields in the 6 versions of program,

194 methods in Siena1.8, 185 methods in Siena1.9 and Siena1.10,

195 methods in Siena1.11, 196 methods in Siena1.14 and 192

methods in Siena1.15.

We obtained 8 versions of Siena (1.8, 1.9, 1.10, 1.11, 1.12, 1.13,

1.14 and 1.15) from SIR. We collected update information

between the adjacent versions. There are five changed classes

between 1.10 and 1.11, four changed classes between 1.8 and 1.9

also between 1.14 and 1.15, three changed classes between 1.13

and 1.14, two changed classes between 1.11 and 1.12, one

changed class in 1.9 and 1.0 also between 1.12 and 1.13. We

Table 1. Unchanged methods without candidate points

old-code new-code
void f() {
 int num = 1;
 String str = null;
}

void f() {
 int num = 1;
 String str = null;
}

Table 2. Unchanged methods with candidate points

old-code’
void f() {
 int num = 1; Catch.snapshot(10);
 String str = null; Catch.snapshot(11);
}

new-code’
void f() {
 int num = 1; Catch.snapshot(10);
 String str = null; Catch.snapshot(11);
}

139

conducted experiments with the three version update, which are

1.8 and 1.9, 1.10 and 1.11, 1.14 and 1.15, because the three

version updates have the maximum three updated content.

Table 3 shows source code information and update information

about the three version updates. The first row of Table 3 shows

the old and new programs. The second row shows the number of

updated classes and total number of classes in each version. The

third row shows the number of updated fields and total number of

fields in each version. We consider all the fields in an updated

class as updated fields. The fourth row shows the number of

updated methods (include constructors) and total number of

methods in each version. The fifth row shows the updated lines of

effective code and total lines of effective code in each version.

When we count the lines of effective code, we only take the code

in methods and constructors into consideration. So, the updated

effective code is effective code in updated methods and

constructors, the total lines of effective code are the total lines of

effective code of all methods and constructors. The sixth row

shows the number of unchanged methods (include constructors)

with some candidate points and the total number of unchanged

methods. The last row shows the number of candidate points and

total lines of unchanged code (the effective cod in unchanged

methods and constructors).

4.2 Setting Candidate Points
In addition to collecting snapshots, we also need basic

information about these snapshots. The attributes we recorded for

each snapshot are shown in Table 4.

We matched old and new snapshots precisely by comparing these

attributes. While Catch.snapshot() dumping snapshots, these

attributes are recorded at the same time.

In our implementation, we tried to set candidate point behind

every line ended with “;” and ignore some special lines. For

example, in Table 2, we ignored the first line “void f() {” and the

last line “}”, which were also counted as effective code. Also, we

didn’t set candidate point behind “return;”, “break;”, “continue;”

the conditions of branch statements (“if” or “switch”), or the

conditions of loop statements (“for” or “while”).

Table 3 demonstrates that, we selected 74.6% on average of

unchanged lines of code and set candidate points, covering 91.2%

on average of unchanged methods.

4.3 Running Test Cases
There are 581 test cases in the Siena project that we got from SIR.

In order to ensure the validity of our experiment, we executed all

the test cases in our experiments.

Our experiment configurations are as follows. The operating

system is 64-bit Ubuntu Kylin 14.04 with 8GB RAM, Intel Core

3.40GHz 8-core CPU. We use OpenJDK 1.7 to perform our

experiment.

Executing all these test cases on 6 programs, which took about

one week, dumps a huge amount of snapshots showing in Table 5.

TOS may fail a few times while analyzing pairs of snapshots due

to bugs. Therefore, the count of snapshots that TOS analyzed is

less than all of the snapshots.

TOS only can produce transformation functions for an updated

field each time. We improve TOS to generate transformation

functions for all fields each time, but the basic functionality has

not changed.

4.4 Calculating Properties of Each Point
In section 3.1, we introduced three properties for candidate points,

namely timeliness, success-rate and operability. We use algorithm

1 in Table 6 to calculate the timeliness and algorithm 2 in Table 7

to calculate success-rate and operability. To be sure, if there are

no objects of any updated class in the snapshot, the operability of

this snapshot is 1. If the operability is 1, we do not need to

Table 4. Attributes of a snapshot

Property Explanation

FileName The name of Java file.

LineNo The No. of this line of code.

MethodName The name of method.

PointNo The identifier of candidate point.

PointTimes The times of passing this candidate point.

SnapshotCount The count of snapshots captured for now.

Table 3. Source code and update information

Old-version/new-version 1.8/1.9 1.10/1.11 1.14/1.15

Class-number: updated/old/new 4/26/26 5/26/26 4/26/26

Field-number: updated/old/new 32/138/138 70/138/138 52/138/138

Method-number: updated/old/new 11/194/185 13/185/195 14/196/192

Code-lines: updated/old/new 612/1777/1756 646/1758/1794 752/1798/1784

Methods-with-point/unchanged-methods 167/183 166/182 166/182

Candidate-points/unchanged-codes 855/1165 820/1112 803/1046

Table 5. The number of snapshots

Update 1.8 to 1.9 1.10 to 1.11 1.14 to 1.15

Version 1.8 1.9 1.10 1.11 1.14 1.15

Count of snapshots 572690 572831 653849 653802 663370 662047

Count of snapshots TOS analyzed 572566 653755 661961

140

generate transformation functions, and we consider the success-

rate as 1.

Because of the huge amount of data, the whole progress of

computing timeliness, success-rate and operability takes about 7

hours.

5. EXPERIMENT RESULTS

5.1 Feasibility of the Technique
We performed experiments on three real version updates of Siena.

Before this section, we have introduced our experiment

configurations. In this section, we will present the result of

experiment and tries to answer question (1):

(1) Can we evaluate and recommend update points according to

the properties that we defined?

When we tried to evaluate candidate points based on the result,

we found that there existed some null points. The three properties

(timeliness, success-rate and operability) of a null point were all 0,

which meant this point was never reached during executing test

cases. We filtered out these null points. Then we found another

problem. Although the three properties of left candidate points

were not 0, but some candidate points, called bad points, had

extreme properties. For example, the timeliness of a bad point

may be 0.99 (close to 1), but the success-rate of the bad point is

very small (close to 0).

As we all know, there are few objects when a program starts.

Therefore the operability and success-rate of candidate points in

starting period is usually higher or even 1. However, the program

only starts once. So the timeliness of candidate points in starting

period are usually small or even near-zero. If we rank candidate

points by giving the highest priority to operability, some of the

top-ranking points are actually bad choices.

Bad and null points would affect our results to a certain extent.

Thus, we filtered out bad points too in the following steps.

After excluding null points, we counted the number of left points,

calculated the sum of each property and computed the average of

each property. We took the average as threshold and exclude

points if one or more properties were smaller than the threshold.

But this threshold would have filtered out most or ever all

candidate points. So we took the half of average as the threshold.

The threshold could be more accurate, and we will make further

attempts in our future work.

Table 8 shows the number of null points and bad points in each

update. After filtering out null and bad points, there are 91

candidate points left in update from 1.8 to 1.9, 94 candidate

points left in update from 1.10 to 1.11 and 49 candidate points left

in update from 1.14 to 1.15. We will recommend update points for

each update.

Each snapshot has three properties. Each property can suit

different needs. If we want to finish updating timelier, we can give

more weight to timeliness. Similarly, by weighting success-rate

more we can make the transformation function easier to develop,

and thus be more confident about the correctness of dynamic

update.

Table 9 shows the update points recommended by our approach.

We take Siena1.8-1.9 as an example and consider timeliness first

and success-rate second. From the result, the three properties can

distinguish each update points. We can use the three properties to

evaluate and recommend update points for programmers. After

programmers getting our suggestions, they can determine the

update points according to their judgments.

We check these points in each update according to our

understandings of the logic and runtime state of each version and

find out that dynamic updates can be applied at these update

points and the executions after updating are as our expected.

5.2 Correlations between Properties

In this section, we tries to answer question (2):

(2) Whether there are correlations between the three properties?

As a matter of experience, the higher of operability, the less

operations are needed to generate transformation functions.

Therefore, we propose a hypothesis:

Table 6. Computing timeliness

Algorithm 1: compute timeliness

Input: collections-of-snapshots of old program

Output: the timeliness of each candidate points

1. Start;

2. Iterate through each collections-of-snapshots

3. Iterate through each snapshot;

4. Add 1 to the point which the snapshot belongs to;

5. Iterate through each candidate points;

6. Compute the ratio of snapshots number and total

number;

7. End;

Table 8. Excluding candidate points

Update 1.8 to 1.9 1.10 to 1.11 1.14 to 1.15

Candidate points 855 820 803

Null points 589 550 578

Bad points 175 176 176

Remaining points 91 94 49

Table 7. Computing success-rate and operability

Algorithm 2: compute success-rate and operability

Input: candidate points, collections-of-snapshots

Output: success-rate and operability of each candidate

points

1. Start;

2. Iterate through each collection-of-snapshots

3. Iterate through each pair-of-snapshots;

4. TOS generating transformer function for each

updated fields;

5. Compute success-rate and operability of this

snapshot;

6. Add 1 to the point which the snapshot belongs to;

7. Add the success-rate of this snapshot to the point;

8. Add the operability of this snapshot to the point;

9. Iterate through each candidate points;

10. Compute the average of success-rate of this point;

11. Compute the average of operability of this point;

12. End;

141

H1: There is a positive correlation between operability and

success-rate.

We calculate the correlation between each two properties.

Because null points have great effect on correlation, we exclude

null points before calculating correlations.

Table 10 shows the correlations we get. It indicates that generally

there is neither correlation between timeliness and success-rate,

nor correlation between timeliness and operability. As to the

correlation between success-rate and operability, the result is

significantly positive for updates from 1.8 to 1.9 and 1.10 to 1.11,

and weakly positive (although very close to significant level) for

the update from 1.10 to 1.11.

In summary, hypothesis H1 is confirmed by the result.

The positive correlation between success-rate and operability

suggests that it may be unnecessary to measure both of them in

recommending update points. The independence between

timeliness and success-rate/operability suggests that it is possible

to select update points that can make the dynamic update both

timely and the transformation functions easy to write.

5.3 Correlation between Properties and

Program Structure

In this section, we tries to answer question (3):

(3) Whether the properties of the candidate points in some

program structures are better than other candidate points?

In the following part, “special statements” means branch

statements (“if” and “switch”) or loop statements (“for” and

“while”), “common statements” means the others.

After we get the properties of every candidate points, we iterate

through every unchanged method and find out whether there are

special statements in the unchanged method. If there are special

statements, we first calculate the average of every property of all

candidate points in special statements, then calculate the average

of every property of all candidate points in common statements.

Afterwards, we compare the relationship between common

statements and special statements, in the same methods.

Intuitively, timeliness of update points in loop statements may be

higher than those in common statements; and those in branch

statements may be lower than in common statements. Therefore,

we propose two hypotheses:

H2: In same methods, the timeliness of candidate points in loop

statements is higher than those in common statements.

H3: In same methods, the timeliness of candidate points in branch

statements is lower than those in common statements.

In the update from 1.8 to 1.9, we find 18 unchanged methods have

both common and special statements, in update from 1.10 to 1.11,

we find 18 and in update from 1.14 to 1.15, we find 17. Totally,

there are 43 unchanged methods have both common and special

statements in our experiment.

Table 11 presents the comparisons of properties between common

and special statements.

In the second row, we use abbreviations. “C” stands for “common

statements” and “S” stands for “special statements”. “C=S” in

“Timeliness” column means that, timeliness of candidate points in

common statements is equal to those in special statements. And

“C>S” or “C<S” means the properties of candidate points in

common statements are greater or smaller than those in special

statements.

From Table 11, we can observe that, 37 unchanged methods have

loop statements and 32 unchanged methods have branch

statements. Because there can exist both loop and branch

statements in a method, the sum of 32 and 37 is greater than 43

unchanged methods.

In “Branch statements” row, “Timeliness” column, there are 32

of “C>S”, which means the timeliness of branch statements is

smaller than common statements in all 32 unchanged methods

Table 10. Correlations between properties

Update 1.8 to 1.9 1.10 to 1.11 1.14 to 1.15

Timeliness vs

Success-rate
-0.0386 -0.0770 -0.0185

Timeliness vs

Operability
-0.1442 -0.1531 -0.1492

Success-rate vs

Operability
0.5916 0.6711 0.4951

Table 11. Comparing special and common statements

Properties Timeliness Success-rate Operability

Comparisons C=S C>S C<S C=S C >S C<S C=S C >S C<S

Loop statements 0 15 22 3 26 8 5 28 4

Branch statements 0 32 0 0 29 3 0 27 5

Table 9. Recommending 5 update points

PointNo FileName Class MethodName Timeliness Success-rate Operability

391 SENP.java ByteBuf bytes 0.1212 0.5947 0.678

385 SENP.java ByteBuf append 0.066 0.6457 0.6989

387 SENP.java ByteBuf append 0.0526 0.5394 0.648

398 SENP.java Tokenizer currByte 0.0472 0.6698 0.7152

399 SENP.java Tokenizer currByte 0.0472 0.6698 0.7152

142

with branch statements. In 100% of unchanged method with

branch statements, the timeliness in branch statements is smaller

than those in common statements. Therefore, we accept

hypothesis H3.

However, when we try to verify H2, we cannot give a definitive

conclusion from Table 11. In “Loop statements” row,

“Timeliness” column, we can see that 22 “C<S” are satisfy H2,

but 15 “C>S” are not. We check these 15 methods and find that,

the 15 unchanged methods have both loop statements and branch

statements. And some of loop statements are in branch statements

and the other loop statements have branch statements in them, that

is the why timeliness in common statements are greater than loop

statements. Therefore, we cannot accept H2, but we get another

conclusion: In the same methods, the timeliness of candidate

points in loop statements, which have no branch statements or are

not in branch statements, is higher than those in common

statements.

For success-rate and operability, we can conclude that, common

statements have much higher values than special statements. This

conforms to the intuition that states at theses points are transient

and unstable, and thus the transform functions for them are

difficult to develop.

This study clearly indicates that the program structures have some

effect on properties of candidate points. In our future work, we

plan to improve our approach by taking program structures into

account.

6. DISCUSSION

6.1 Efficiency

In order to recommend update points with better update timeliness

and less state transformation complexity, we considered as much

candidate points as we could. In our experiment, we set candidate

points in about 74% unchanged lines of valid code, which covered

91.2% of unchanged methods. In the following steps of the

experiment, executing test cases, collecting snapshot at these

candidate points and analyzing the properties of each candidate

point were all time-consuming. It took about 8 days to get the

results.

We spent little effort to optimize the execution performance of the

experiment in this preliminary study, but we believe there is a

large room for improvement.

For example, we can borrow the idea of “equivalent update

points” used in Hayden et al. [18]. In that work they proposed an

efficient, systematic testing methodology for dynamically

updateable software. To avoid duplicated testing they group

semantically equivalent update points together and just test one of

them. In our approach, we also just need to evaluate one update

point in an equivalent group. For instance, in Table 12, we

assume that f(), g() and h() do not call any other functions. And

point_1, point_2, point_3 and point_4 are update points. In an

update, f() and g() remain the same, h() is changed. Whether we

apply the update at point_1, point_2 or point_3, the behavior of

this program is the same. The main() calls f() and g(). And these

calls will point to the old version. On the other hand, the calls to

h() will point to the new version. So point_1, point_2 and point_3

are equivalent points.

Initial estimation with our subject shows that the method can

reduce equivalent update tests and equivalent update points for

about 90%. We plan to adopt this optimization in our future work.

6.2 Test Case And Real-World Execution

Our approach and experiment executing test cases to collect

snapshots and then analyze properties of candidate points. The

most practical way is getting a large amount of different user’s

operation trace and then collecting snapshots from these trace.

However, it is extremely difficult to obtain these data. After the

comprehensive balance, we decide to use a set of test cases, which

can execute on both old and new programs. This will lead to little

deviation from real-world execution. But we think it is acceptable.

If one wants to use our approach to get more precise results, the

real-world execution can be taken into consideration.

7. CONCLUSION AND FUTURE WORK
In this paper, we conceived an approach to automatic

recommendation of update points for dynamic software updating.

Some preliminary experiments were carried out to examine the

feasibility and effectiveness of our approach and explore some

relevant issues.

We are working on further improvements to this approach such as

a better strategy to select candidate update points, performance

optimizations and more experiments with real world subjects to

evaluate the correctness and effectiveness of our approach.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful suggestions

and comments. This work was supported in part by National Basic

Research 973 Program (Grant No. 2015CB352202), and National

Natural Science Foundation (Grant Nos. 61472177, 91318301,

61321491, 61361120097) of China.

REFERENCES
[1] Subramanian, S., Hicks, M., & McKinley, K. S. (2009).

Dynamic software updates: a VM-centric approach (Vol. 44,

No. 6, pp. 1-12). ACM.

[2] Hayden, C. M., Smith, E. K., Hardisty, E. A., Hicks, M., &

Foster, J. S. (2012). Evaluating dynamic software update

safety using systematic testing. Software Engineering, IEEE

Transactions on, 38(6), 1340-1354.

[3] Hicks, M., Moore, J. T., & Nettles, S. (2001). Dynamic

software updating (Vol. 36, No. 5, pp. 13-23). ACM.

[4] Magill, S., Hicks, M., Subramanian, S., & McKinley, K. S.

(2012, October). Automating object transformations for

dynamic software updating. In ACM SIGPLAN Notices (Vol.

47, No. 10, pp. 265-280). ACM.

[5] Neamtiu, I., & Hicks, M. (2009, June). Safe and timely

updates to multi-threaded programs. In ACM Sigplan

Notices (Vol. 44, No. 6, pp. 13-24). ACM.

Table 12. Equivalent update points

void main(){

point_1; f();

point_2; g();

point_3; h();

}

143

[6] Gupta, D., Jalote, P., & Barua, G. (1996). A formal

framework for on-line software version change. Software

Engineering, IEEE Transactions on, 22(2), 120-131.

[7] Neamtiu, I., Hicks, M., Foster, J. S., & Pratikakis, P. (2008,

January). Contextual effects for version-consistent dynamic

software updating and safe concurrent programming. In

ACM SIGPLAN Notices (Vol. 43, No. 1, pp. 37-49). ACM.

[8] Arnold, J., & Kaashoek, M. F. (2009, April). Ksplice:

Automatic rebootless kernel updates. In Proceedings of the

4th ACM European conference on Computer systems (pp.

187-198). ACM.

[9] Mitchell, N., & Sevitsky, G. (2003). LeakBot: An automated

and lightweight tool for diagnosing memory leaks in large

Java applications. In ECOOP 2003–Object-Oriented

Programming (pp. 351-377). Springer Berlin Heidelberg.

[10] Bierman, G., Parkinson, M., & Noble, J. (2008). UpgradeJ:

Incremental typechecking for class upgrades. In ECOOP

2008–Object-Oriented Programming (pp. 235-259). Springer

Berlin Heidelberg.

[11] Chen, H., Yu, J., Chen, R., Zang, B., & Yew, P. C. (2007,

May). Polus: A powerful live updating system. In

Proceedings of the 29th international conference on Software

Engineering (pp. 271-281). IEEE Computer Society.

[12] Altekar, G., Bagrak, I., Burstein, P., & Schultz, A. (2005,

August). OPUS: Online Patches and Updates for Security. In

Usenix Security (Vol. 5).

[13] Malabarba, S., Pandey, R., Gragg, J., Barr, E., & Barnes, J. F.

(2000). Runtime support for type-safe dynamic Java classes

(pp. 337-361). Springer Berlin Heidelberg.

[14] Gu T., Cao C., Xu C., et al. Javelus: A Low Disruptive

Approach to Dynamic Software Updates[C]//Software

Engineering Conference (APSEC), 2012 19th Asia-Pacific.

IEEE, 2012, 1: 527-536.

[15] Matozoid, Java 1.7 parser and Abstract Syntax Tree.

https://github.com/matozoid/javaparser, 2007

[16] ORACLE, Java Documentation, Java Platform, Standard

Edition Tools Reference.

http://docs.oracle.com/javase/8/docs/technotes/tools/unix/,

1993.

[17] Software-artifact Infrastructure Repository, Object

Biography: Siena, http://sir.unl.edu/portal/bios/siena.php, Jul.

20, 2014

[18] Hayden, C. M., Hardisty, E. A., Hicks, M., & Foster, J. S.

(2009, October). Efficient systematic testing for dynamically

updatable software. In Proceedings of the 2nd International

Workshop on Hot Topics in Software Upgrades (p. 9). ACM.

144

