Let S(X) = % .We have 0 < S(x) <1, and S'(x) =S(X)(1—S(x)) >0. Hence, S(x) is
+

monotonically increasing. Next, we have 0 < S’(X) < 2. Then, based on the Lagrange mean value
theorem, we have that S(X) is Lipchitz function.
Next, since S"(X) = S(X)(L—S(X))(L—2S(x)), we have | S"(X) |<6. Then S’(x)is Lipchitz function.

Finally, let f => S [S(F, —1,)=S(r, —r,)] +2> p?
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As we can see from the above equations, Vf = (—~ is Frechet derivative. Thus, it is also G-
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function (via Theorem 3.2.4 (p.70) in [1]).
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differentiable, and V? f :L } satisfies HVZ f H <M < 0. Consequently, we have VT is Lipschitz
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