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. We have 0 ( ) 1S x  , and ( ) ( )(1 ( )) 0S x S x S x    . Hence, ( )S x is 

monotonically increasing. Next, we have 0 ( ) 2S x  . Then, based on the Lagrange mean value 

theorem, we have that ( )S x is Lipchitz function. 

Next, since ( ) ( )(1 ( ))(1 2 ( ))S x S x S x S x    , we have | ( ) | 6S x  . Then ( )S x is Lipchitz function. 
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As we can see from the above equations, 
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 is Frechet derivative. Thus, it is also G-

differentiable, and 
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 satisfies 
2 f M   . Consequently, we have f is Lipschitz 

function (via Theorem 3.2.4 (p.70) in [1]). 
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